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Overview

We develop epidemic models for analysis of policy
measures to protect COVID-19 at-risk populations
INn Los Angeles County

Motivating research questions:

 How did the epidemic affect different at-risk populationse

* How effective were policies at preventing severe illness in at-
risk populationse




Different types of COVID-19 at-risk populations

At higher risk of exposure and infection

« Social and socio-economic factors:
 Household crowdedness
« Employment and ability to work from home
« Income and ability to protect oneself
« Acces to healthcare

At higher risk of severe iliness given infection, i.e. of
hospitalization and death
 Biological / health-related factors:
« Age
« Comorbidities
« Obesity
 History of smoking
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Epidemic model + risk model for policy analysis

To analyze policies related to protecting populations at-risk
of severe infection, we need two modeling pieces:

1. Epidemic model that estimates dyanmics of infections,
hospitalizations, and deaths

2. Risk model for estimating the probabilities of severe
iliIness in different at-risk populations
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Model compartment variable projections

Numbers in Compartments
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Reproductive Number - R(1)
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Epidemic model + risk model for policy analysis

To analyze policies related to protecting populations at-risk
of severe infection, we need two modeling pieces:

1. Epidemic model that estimates dyanmics of infections,
hospitalizations, and deaths

12. Risk model for estimating the probabilities of severe !
I lllness in different at-risk populations I



Biological Risk Factors

Age was categorized into five groups:
o 0-19, 20-44, 45-64, and 65-79, and 80+.

Comorbidities: diabetes, hypertension, chronic obstructive
pulmonary disease (COPD), hepatitis B, coronary heart disease,
stroke, cancer and chronic kidney disease.

Smoking: Current smoking vs. none.
Obesity was categorized as three groups:

. BMI< 30<Z; 30 < BMI < 40=Z; BMI> 40 kg/m?
m m



Categorizing the LA population into risk profiles

Group age BMI smoking comorbidity Pop.Prev
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20-44 BMI<30 Non Smoker [('Comorbidity " (05055
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Categorizing the LA population into risk profiles

Group age BMI smoking comorbidity Pop.Prev  P(H|l).May.15
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IFR varies widely across risk profiles within age groups

015
Ages 0-18
—o— Ages 19-49
e Ages 50-65
—e— Ages 65-79

0.05 - Ages 80+

------------
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Horn et al. 2021, PLOS ONE, to appear.



Scenario analysis:
1st and 2nd Epidemic Waves, March - October, 2020
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R(t)

Policies evaluated:
More moderate intervention via modifying R(t)

R(t): Scenarios

Stage

" Modifications
1 ]

1
Schoql Year

Distancing intervention level

—— More moderate intervention

~—— No intervention

~— Actual intervention (lockdown)



Policies evaluated:
Protection of at-risk populations

No (direct) protection of at-risk groups
 What actually happened

Protect those > 65 years old
« 17% of the LAC population

Protect those >65 years old AND/OR with highest health risk factors
« ~35% of the LAC population



Counterfactual Scenario Results

19

Deaths

In Hospital

Infected

Observed Lockdown

65+ AND risks

Protect 65+

No protection
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1t and 2"d wave analysis -
what went right

The strict inifial lockdown period in LAC was effective
because it both reduced overall transmission and
protected individuals at greater risk

Moderate interventions + protection of 65+ alone would have

overwhelmed healthcare capacity and doubled the death
count




But what about the major 39 epidemic wave?
November 2020 - February 2021
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Different types of COVID-19 at-risk populations

| At higher risk of exposure and infection

« Social and socio-economic factors:
 Household crowdedness
« Employment and ability to work from home
« Income and ability to protect oneself
« Acces to healthcare

At higher risk of severe iliness given infection, i.e. of
hospitalization and death
 Biological / health-related factors:
« Age
« Comorbidities
« Obesity
 History of smoking
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_ Big mobility data:
Informs risk of infection by neighborhood

smarfphone devices

D * Big data from geolocation traces on

* A large and representative population
sample (10% of US population)

» Spatial measures of:
i « Population able to stay at home
A 2 « Population fraveling in fo work

« Aggregated individual-level patterns
AcCross neighborhoods




Measures from mobility data:
who is able to stay at home

COVID-19 Incidence Rate

3000

2000+

1000+

Two-week Incidence Rate (per 100k)

=== Beverly Hills
=== Boyle Heights
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== Pacoima
= Palos Verdes Estates
= Pasadena

=== Santa Monica

Population staying at home (ratio
difference from pre-pandemic)
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Santa Monica



June 2020

December 2020

Measures from mobility data - by neighborhood
COVID-19 7-day Crude Incidence Rate
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Next steps:
Investigating 3" wave with neighborhood model

Use the neighborhood model to do scenario analysis on the 3rd

wave to investigate:
 How effective were policy measures to protect different

populations from infection, hospitalization, and death?
 What would things have looked like if we had done @
greater job to help more people stay at home or not go to

work if sick?e



Mobility data informing coniacj rates

* Incorporate mobility data. Ongoing.
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Counterfactual Scenario Results

Deaths
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Horn et al. 2021, MedarXiv.
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