An Overview of the California Statewide Freight Forecasting Model (CSFFM)

Andre Tok, Ph.D.
Asst. Project Scientist
University of California, Irvine

January 27, 2016

Outline

CSFFM Overview

Example Scenarios

Follow-up Efforts

California Statewide Freight Forecasting Model

Commodity-based Model

- Forecasts the *flow of commodities by transportation mode* as a function of *employment, establishment, land use variables* based on integrated CSTDM and FAF transportation network.
- Based on the 2007/10 Federal Freight Analysis Framework 3 (FAF 3) database.

15 Commodity Groups (aggregated at the 2-digit SCTG code level)

CSFFM Commodity Group	SCTG Code*	CSFFM Commodity Group	SCTG Code*
G1 Agriculture products	1-4	G9 Chemical/ pharmaceutical products	20-23
G2 Wood, printed products	26-29	G10 Nonmetal mineral products	31
G3 Crude petroleum	16	G11 Metal manufactured products	32-34
G4 Fuel and oil products	17,18,19	G12 Waste material	41
G5 Gravel/ sand and non metallic minerals	10-13	G13 Electronics	35,38
G6 Coal / metallic minerals	14-15	G14 Transportation equipment	36-37
G7 Food, beverage, tobacco products	5-9	G15 Logs	25
G8 Manufactured products	24,30,39,40,42,43		

^{*} SCTG Code: Standard Classification of Transported Goods Code used in Freight Analysis Framework 3(FAF3) source: http://2bts.rita.dot.gov/publications/commodity_flow_survey/survey_materials/pdf/sctg_booklet.pdf

Freight Analysis Zoning System

FAF only defines 5 coarse regions in California inadequate resolution for analysis of freight policies and scenarios. **US FAF Zones 58 Counties 97 CSFFM FAZs Defined at county and sub-county** levels Aggregation of CSTDM TAZs • Conforms to MPO, Caltrans District and CARB Air Basin boundaries

Freight Analysis Zoning System

Within California

- 97 Freight Analysis Zones (FAZs)
- 38 Import/Export Gateways:
 - 19 Land Ports (6 in Arizona) US-MEX
 - 8 Airports
 - 11 Seaports
- <u>26 Transport Logistic Nodes</u>
 (TLNs or Transshipment Nodes):
 - 13 Airports (8 of these are Gateways)
 - 13 Rail Terminals (including 4 rail terminals directly connected to seaports)

Part of *CSFFM network* for Los Angeles, Ventura, and San Bernardino counties

Outside California

118 domestic FAF regions and 8 international FAF regions

FAF3 Overview

FAF3 Freight Flow Matrix

- Comprises:
 - 131 Origins x
 - 131 Destinations x
 - 43 Commodity Classes x
 - **8 Modal Categories**
- Reports <u>Annual Tons</u> and <u>Annual</u>
 Dollar values.

CFS data gaps → FAF users challenges

- CFS data suppression and missing values are estimated using other sources
- CFS sample size limitations : real zero flows vs. sampling error

What constitutes this mega OD matrix?

- CFS freight flows accounts for 68% of FAF
- Out of CFS scope flows account for 32% of all U.S. freight movements measured on an annual tonnage basis

Comparison of Key FAF3 and CSFFM Attributes

7

CSFFM Primary Modules

Truck Assignment Results

Assignment of CSFFM Truck Classes 3 and 4 across 48 contiguous states for 2007

Assignment by CSFFM Truck Categories for 2007

Integration with CSTDM

Common Master Network CSFFM and CSTDM networks are generated from the same master network

Centroid IDs are consistent.

CSFFM zones are an aggregation of CSTDM zones

CSFFM's <u>Final Truck Matrix</u> can be disaggregated using the CSFFM Disaggregation Module to match CSTDM's zoning system

Some CSFFM Uses

Stand-alone Applications

- Statewide analysis of demo-economic changes at FAZ level (in and outside of CA)
- Major upgrade of transportation facilities
 - e.g. new corridors or facility type upgrades
- Mode-shift analysis between truck and rail

Integration with CSTDM or regional models

- Sub-area and Project-level analysis
 - Congestion
 - Capacity upgrades

Example Scenarios

25 Percent Oil Price Increase

Scenario Setup

- 17 percent increase in diesel for truck mode
- 6.4 percent increase in rail operating cost
- 5 percent decrease in all employment sectors and GDP

< -2.5%

- 30 percent Fallowed Acres
- Employment reduction in 7 industry categories

- Capacity expansion along I-405 and I-710 corridors
- Increase in corridor speeds can be obtained from CSTDM
- Uniform 10 % corridor speed increase assumed for this example

Model predicts regional network impacts:

- Increased truck volumes on I-405, I-710 & I-10
- Reduced truck volumes on I-5 & SR-91

Alameda Rail Corridor Closure

Follow-up Efforts

California Vehicle Inventory and Use Survey (Cal-VIUS)

Truck Activity Monitoring System (TAMS)

Online California Freight Data Repository (Cal-FRED) Update

Follow-up Efforts: California Vehicle Inventory and use Survey (Cal-VIUS) Studies

- Designed to address limitations in 2002 VIUS by providing
 - In-state and out-of-state truck activity
 - Detailed commodity and payload information by truck and trailer configuration
 - Empty factors by truck activity
- Pilot study completed by UCI using web-based platform
- Full study underway

Follow-up Efforts: Advanced Truck Data Collection

- Pilot Study (Completed by UCI in 2015)
 - Detailed classification of truck and trailer body configurations at existing WIM and inductive loop only sites using inductive signature data (combined with WIM data at WIM sites)
 - Pilot study completed by UCI with implementation at 16 locations in San Joaquin Valley
- Enhancement Study and Extended Implementation by UCI (Started Aug 2015)
 - Model improvements
 - Investigation of new facility types
 - Extended implementation of 76 additional sites throughout CA

Monterer

Deployed Locations

Truck Activity Monitoring System (TAMS) showing significant intermodal container traffic along SR-205 Freeway between Port of Oakland and Lathrop rail facility

Follow-up Efforts: Cal-FRED Update and Enhancement

The End

Commodity Module

- Generates <u>Production/Consumption</u> and <u>Distribution</u> based on demoeconomic data and impedance information (e.g., travel time and cost)
- Estimate import/export freight on gateways in CA

Mode Split Module

Data Files Modules

Parameters Model Output

- Determines mode-share for each mode in each OD pair
- Aggregate mode split model estimated using FAF mode data
- Incremental logit models used to evaluate impacts of mode attribute changes

Commodity Flow ODs for All Modes

- Commodity ODs for Water Only and Pipelines are final output for those modes.
- Commodity ODs for <u>Truck only</u>, <u>Rail only</u>, and <u>Multiple-mode (parcel by Truck)</u>
 - Bypasses Transshipment Module from the model structure
 - Procedure: (Commodity ODs) → Conversion from Tonnage to Vehicle → Network Module
- Commodity ODs for <u>Truck-rail</u> and <u>Truck-Air</u>
 - Procedure: (Commodity ODs) → Transshipment Module → Conversion from Tonnage to Vehicle → Network Module

Data Flow of Transshipment Module

- Decompose inter-modal trips into Truck/Rail/Air segments (Tonnage based)
- Determine which TLNs are used for each freight movement
- Three major inputs: (1) Truck-Air O/D, (2) Truck-Rail O/D, (3) Facility Data
- Three major outputs: (1) Truck, (2) Air, and (3) Rail segment O/Ds at FAZ + Gateway +TLN level

Seasonality and Payload Factor Module

Network Module

Data Files Modules
Parameters Model Output

- Highway Truck Assignment (Multi-class Assignment):
 - Multi-class Multi-path static assignment (calibrated with ATRI truck GPS)
- Rail Assignment:
 - All-or-Nothing (AON) tonnage based